
Walt Ligon, Clemson University1

Development of the PVFSv2
Parallel File System

Walt Ligon
ESTC

Wednesday, June 25, 2003

Walt Ligon, Clemson University2

Relevance to NASA's Mission
● “Petabytes to Megabytes”

– Dealing with Petabytes is a tough problem
– Distillation ... not the final product

● Exaflops for modelling ...
– How many bytes per second to deal with Exaflops?

● More and more and MORE data!
– Even if we filter it down, there is a LOT to work with

Walt Ligon, Clemson University3

My Work is About ...
● High Performance Computing

– Computing when speed is really the issue
– How to deliver Petaflops and Exaflops

● Parallel Computing
– It is really the only way to get the speed we need
– It fundamentally changes everything about how

programs run
● Parallel I/O

– If you can't keep it fed, it doesn't matter how fast it is

Walt Ligon, Clemson University4

Parallel File Systems
● Two tasks:

– Distribute data among nodes in a parallel computer
● Leverage parallel I/O subsystems for performance

– Provide access mechanisms for parallel applications
● Simplifies complex access procedures

● PVFS – Parallel Virtual File System
– Designed for Beowulf class parallel computers
– Focuses on high-throughput access to large data sets
– Underdevelopment since 1993 at GSFC

Walt Ligon, Clemson University5

Goals and Outline
● Goals of this talk:

– Briefly cover the design of PVFSv2
● Goals of PVFSv2
● Major subsystems

– Motivate innovative features
● Networking and storage abstractions
● Requests and distributions

– Introduce research directions
● Redundancy
● Semantics
● Synchronization and atomicity

Walt Ligon, Clemson University6

Goals of PVFSv2
● Production quality design and implementation
● Extendable with modules
● Fully distributed - data and metadata
● Support for MPI-IO
● Support for data redundancy and fail-over
● Support for experimentation and research in

parallel file systems

Walt Ligon, Clemson University7

PVFSv2 System Architecture

Request Processor
Job Layer

BMI TroveFlows

Dist

Network

System Interface

Job Layer

BMI Flows
Dist

icache dcache

Disk

Client Server

Walt Ligon, Clemson University8

PVFSv2 System Architecture

Request Processor
Job Layer

BMI TroveFlows

Dist

Network

System Interface

Job Layer

BMI Flows
Dist

icache dcache

Disk

Client

Server
Application

User Interface (MPI-IO)

Walt Ligon, Clemson University9

BMI
● Network interface abstraction

– Abstract node addressing
– Supports multiple network fabrics simultaneously
– Non-blocking semantics

● post: submit a send or receive
● test: check if a send or receive is done
● wait: wait for a send or receive to be done

– Ports to new network fabrics with module
– Support for zero-copy protocols

Walt Ligon, Clemson University10

Trove
● Storage interface abstraction

– Manages storage objects referenced by a handle
– Non-blocking interface
– Data space (storage object) has:

● bytestream space -- used for file data
● key/value pair space -- used for file metadata
● attribute space -- used for object metadata (stat info)

– Data spaces are clustered to allow migration of
storage objects between servers

– Support for synchronizing access to storage objects

Walt Ligon, Clemson University11

Job Layer
● Manages asynchrony and scheduling for I/O

transfers
– Non-blocking interface
– Combines operations for BMI, Trove, and Flows

● Allows testing and waiting on all subsystems
● May utilize threads for better performance

– Performance dependency analysis on server requests
and enforces ordering

– Supports higher order scheduling between transfers

Walt Ligon, Clemson University12

Flows
● Provide a direct transfer of

data between:
– BMI and Trove
– BMI and memory

● Allows transfers to bypass job
and request layers for
efficiency

● Implements request and
distribution processing

Request Processor
Job Layer

BMI TroveFlows

Dist

Network Disk

Server

Walt Ligon, Clemson University13

Request Processor
● Main control loop of the PVFSv2 server
● Designed to process multiple requests

concurrently
● Implemented using a state machine that encodes

the steps of each request
● State machine language implemented to simplify

state machine coding
– Allows new requests to be easily added
– encourages code reuse

Walt Ligon, Clemson University14

System Interface
● Client-side top-level system code
● Implements caching of inodes and directories
● Exposes features of the file system for use in

higher level interfaces
● Intended as a VFS-level interface, not a user

interface

Walt Ligon, Clemson University15

I/O Requests
● Based on MPI Datatype

– Uses same constructor functions
– Easily integrates with existing MPI Datatypes
– Allows arbitrary non-contiguous regions to be read

from a file
– Provides a compact description of large regular access

patterns

Walt Ligon, Clemson University16

Data Distribution
● Programmable

distributions are loaded
from modules
– Arbitrary mapping of data

to servers
– Data can be distributed to

match algorithmic access
patterns

– Distribution can be fine
tuned to maximize
performance

Simple Striping

Nested Striping

Walt Ligon, Clemson University17

Redundancy
● Redundancy is often at odds with performance

– RAID 5 is considered the standard for redundancy
– RAID 5 creates a bottleneck that requires ALL file

data to pass through one point in the system to
compute parity

– RAID 5 is not generally the best performing
configuration - mirroring (RAID 0+1) is usually
better

– Both RAID 5 and RAID 0+1 require synchronization
between data servers for consistency

Walt Ligon, Clemson University18

Redundancy in PVFSv2
● PVFSv2 will support redundancy

– Selectable type of redundancy on a file-by-file basis
– Redundancy implemented in modules - allows

different redundancy schemes to be implemented
– Fault-tolerant features in the system interface

● tolerates server failure
● reports server status
● allows restart of requests

Walt Ligon, Clemson University19

New Redundancy Types
● Configure when redundancy is maintained

– Lazy Redundancy
● Redundancy created when file closed
● Protects against loss during storage

– Commit Redundancy
● Redundancy created at specific points in program execution
● Useful for long running programs that update by section

– Update Redundancy
● Redundancy updated when data updated
● Most complex, and most secure

Walt Ligon, Clemson University20

Semantics
● Portability concerns

– Posix
– MPI-IO

● Caching
● Locking
● Concurrent access
● Security

Walt Ligon, Clemson University21

PVFSv2 Semantics
● Guiding principles

– Semantics often conflict with performance goals
– No single set of semantics is right for every situation

● High-performance choices
● Implementations of alternative choices supported

– caching
– redundancy
– locking

● Expect more choices in the future

Walt Ligon, Clemson University22

Synchronization and Atomicity
● Needed by

– Redundancy schemes
– Some semantics
– Some applications

● Mostly implemented with region-based locks
– Work well in hardware but not scalable in software
– Mostly used to achieve atomicity
– Lots of state on clients
– Lots of I/O, poor scalability

Walt Ligon, Clemson University23

Conditional Operators
● Taken from modern SMP hardware designs

– Load Locked
– Store conditional

● Allows local operations to proceed
● Conditional store operations check for atomicity

violation
● Could this be applied to a parallel file system?

Walt Ligon, Clemson University24

Benchmarking
● Need standardized benchmarks for parallel I/O

– measurement procedure
– reporting format
– terminology

● Test a range of workloads
– small/large transactions
– contiguous/non-contiguous
– metadata operations

● Both synthetic and application benchmarks

Walt Ligon, Clemson University25

I/O Benchmark Consortium
● Open group working to establish an effective set

of benchmarks for parallel I/O
● Have national lab and university involvement
● Need industry involvement
● Need input from applications groups

http://www.mcs.anl.gov/~rross/pio-benchmark/index.html

Walt Ligon, Clemson University26

Conclusions
● PVFSv2 development nearing a release

– Targeting Supercomputing 2003 Exposition
● Important research issues

– Locking, redundancy, scalability
– Interfaces, semantics

● We need a joint effort to reach goals
– Open, flexible, common platform
– Good benchmarks

http://www.parl.clemson.edu/pvfs/

